class TransientDecisionParameter(Parameter):
""" Return one of two values depending on the current time-step
This `Parameter` can be used to model a discrete decision event
that happens at a given date. Prior to this date the `before`
value is returned, and post this date the `after` value is returned.
Parameters
----------
decision_date : string or pandas.Timestamp
The trigger date for the decision.
before_parameter : Parameter
The value to use before the decision date.
after_parameter : Parameter
The value to use after the decision date.
earliest_date : string or pandas.Timestamp or None
Earliest date that the variable can be set to. Defaults to `model.timestepper.start`
latest_date : string or pandas.Timestamp or None
Latest date that the variable can be set to. Defaults to `model.timestepper.end`
decision_freq : pandas frequency string (default 'AS')
The resolution of feasible dates. For example 'AS' would create feasible dates every
year between `earliest_date` and `latest_date`. The `pandas` functions are used
internally for delta date calculations.
"""
def __init__(self, model, decision_date, before_parameter, after_parameter, earliest_date=None, latest_date=None, decision_freq='AS', **kwargs):
super(TransientDecisionParameter, self).__init__(model, **kwargs)
self._decision_date = None
self.decision_date = decision_date
if not isinstance(before_parameter, Parameter):
raise ValueError('The `before` value should be a Parameter instance.')
before_parameter.parents.add(self)
self.before_parameter = before_parameter
if not isinstance(after_parameter, Parameter):
raise ValueError('The `after` value should be a Parameter instance.')
after_parameter.parents.add(self)
self.after_parameter = after_parameter
# These parameters are mostly used if this class is used as variable.
self._earliest_date = None
self.earliest_date = earliest_date
self._latest_date = None
self.latest_date = latest_date
self.decision_freq = decision_freq
self._feasible_dates = None
self.integer_size = 1 # This parameter has a single integer variable
def decision_date():
def fget(self):
return self._decision_date
def fset(self, value):
if isinstance(value, pd.Timestamp):
self._decision_date = value
else:
self._decision_date = pd.to_datetime(value)
return locals()
decision_date = property(**decision_date())
def earliest_date():
def fget(self):
if self._earliest_date is not None:
return self._earliest_date
else:
return self.model.timestepper.start
def fset(self, value):
if isinstance(value, pd.Timestamp):
self._earliest_date = value
else:
self._earliest_date = pd.to_datetime(value)
return locals()
earliest_date = property(**earliest_date())
def latest_date():
def fget(self):
if self._latest_date is not None:
return self._latest_date
else:
return self.model.timestepper.end
def fset(self, value):
if isinstance(value, pd.Timestamp):
self._latest_date = value
else:
self._latest_date = pd.to_datetime(value)
return locals()
latest_date = property(**latest_date())
def setup(self):
super(TransientDecisionParameter, self).setup()
# Now setup the feasible dates for when this object is used as a variable.
self._feasible_dates = pd.date_range(self.earliest_date, self.latest_date,
freq=self.decision_freq)
def value(self, ts, scenario_index):
if ts is None:
v = self.before_parameter.get_value(scenario_index)
elif ts.datetime >= self.decision_date:
v = self.after_parameter.get_value(scenario_index)
else:
v = self.before_parameter.get_value(scenario_index)
return v
def get_integer_lower_bounds(self):
return np.array([0, ], dtype=np.int)
def get_integer_upper_bounds(self):
return np.array([len(self._feasible_dates) - 1, ], dtype=np.int)
def set_integer_variables(self, values):
# Update the decision date with the corresponding feasible date
self.decision_date = self._feasible_dates[values[0]]
def get_integer_variables(self):
return np.array([self._feasible_dates.get_loc(self.decision_date), ], dtype=np.int)
def dump(self):
data = {
'earliest_date': self.earliest_date.isoformat(),
'latest_date': self.latest_date.isoformat(),
'decision_date': self.decision_date.isoformat(),
'decision_frequency': self.decision_freq
}
return data
@classmethod
def load(cls, model, data):
before_parameter = load_parameter(model, data.pop('before_parameter'))
after_parameter = load_parameter(model, data.pop('after_parameter'))
return cls(model, before_parameter=before_parameter, after_parameter=after_parameter, **data)
TransientDecisionParameter.register()
Now when running this network in WaterStrategy, a TranscientDecisionParameter will be registered.
Make sure after saving your Custom Rule, it is displayed on the left side, in this case under Parameter section
Using TranscientDecisionParameter
For this case, we will double the max volume of New Reservoir storage node starting on 2045-01-01
Go to New Reservoir storage node and Edit Max Volume
TranscientDecisionParameter includes attributes before_parameter and after_parameter which we will have to create as following:
A small text box will open, when we can write the name of our new PWR_PARAMETER, in this case
__New reservoir__:max_volume before. Click Enter.
WaterStrategy will open the parameter window, paste the following code and Save
__New reservoir__:max_volume before:
{
"type": "ConstantParameter",
"value": 120000
}
Repeat to create the max volume after parameter
__New reservoir__:max_volume after:
{
"type": "ConstantParameter",
"value": 240000
}
As last step, TranscientDecisionParameter needs Initial Volume Proportion for the storage node as the parameter inherit initial values from the node, in this case we will setup to 0.99
Results
As we can see in the following picture, we are combining pywr-scenarios using Climate Change and increasing the volume of our selected reservoir from 120.000 Ml to 240.000 Ml in 1st january 2045.
Paste the following code and then click on the save button